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l(t, dx, dv) 5 f(t, x, v) dx dv, (1.4)
A class of algorithms for the numerical treatment of the Boltzmann

equation is introduced. This class generalizes the standard direct where f is the solution of Eq. (1.1), by a system of point
simulation Monte Carlo method, which is contained as a particular measures defined by a particle system. The classical particle
case. The new algorithms use a more general procedure of model-

method introduced by G. A. Bird in 1963 (called ‘‘directling collisions between particles. This procedure is based on a ran-
simulation Monte Carlo’’ or DSMC method) was deriveddom weight transfer from the particles with the precollision veloci-

ties to the particles with the postcollision velocities. Q 1996 on the basis of physical intuition (cf. [3, 6]). In recent
Academic Press, Inc. years some progress has been achieved in the mathematical

foundation of particle methods for the Boltzmann equa-
tion. We refer to [1, 2, 19, 20] concerning convergence

1. INTRODUCTION results (as the number of particles in the system tends
to infinity).This paper is concerned with the numerical solution of

Basing on these results, an even more challenging prob-the Boltzmann equation for dilute monatomic gases [7]
lem arises—the mathematically rigorous study and the im-
provement of the efficiency of the simulation schemes in
the sense of rates of convergence or even error estimates­

­t
f(t, x, v) 1 (v, =x) f(t, x, v)

(see, e.g., the discussion in [5]). In the case of stochastic
methods, an improvement of the convergence behaviour

5 E
R

3 dw E
S

2 de B(v, w, e)[ f(t, x, v*) f(t, x, w*) is mainly related to the problem of variance reduction,
i.e., the reduction of the random fluctuations around the

2 f(t, x, v) f(t, x, w)], (1.1) deterministic limit.
For example, the problem of calculating a gas flowf(0, x, v) 5 f0(x, v), (1.2)

around an obstacle by particle methods becomes difficult,
if there are large differences in the gas density. The gaswhere t $ 0, x [ D , R3, and v [ R3. The symbol =x
density behind the obstacle may be some orders of magni-denotes the vector of the partial derivatives with respect to
tude lower than the gas density in front of the obstacle.x, D is a bounded domain in three-dimensional Euclidean
Macroscopic quantities of the gas in the low density regionspace R3, and (?, ?) is the scalar product. The function B
cannot be calculated efficiently, since only very few testis called the collision kernel. The symbols de and dw denote
particles enter this region, or, in statistical terms, the fluc-the uniform surface measure on the unit sphere S 2 and
tuations of the corresponding estimators are very large.the Lebesgue measure on R3, respectively. The objects v*

In order to handle such a situation, it is necessary toand w* are defined as
have some mechanism for adapting the particle scheme to
the concrete problem. For instance, it would be helpful to

v* 5 v 1 e(e, w 2 v), w* 5 w 1 e(e, v 2 w), (1.3) have the opportunity to blow up or reduce the system of
test particles in a certain region, or to enforce test particles
to enter the desired region. To this end, it is of interest towhere v, w [ R3, e [ S 2. They are interpreted as the

postcollision velocities of two particles with the precollision develop models with certain parameters that can be used
to control the behaviour of the system.velocities v and w.

The basic idea of particle methods for the numerical The purpose of this paper is to propose a step into this
direction. We generalize the standard DSMC method insolution of the Boltzmann equation (cf. [16, 8, 13, 17]) is

to approximate the measures such a way that the new class of particle methods contains
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244 RJASANOW AND WAGNER

certain degrees of freedom. For a special choice of these spectively. The index k indicates the number of the time
interval. The index n is a parameter governing the approxi-parameters, the standard DSMC method is obtained. Un-

der rather general assumptions concerning the parameters, mation of the initial measure
the deterministic limit (as the number of particles tends

l0(dx, dv) 5 f0(x, v) dx dv, (2.4)to infinity) is the same as for the standard DSMC method.
The basic idea is a more general procedure of modelling

which corresponds to the function f0 appearing in the initialcollisions between particles. They are simulated by a ran-
condition (1.2) of the Boltzmann equation. Usually, thedom weight transfer, which is connected with an increase
parameter n is the number of particles in the system atof the number of particles in the system. This idea origi-
time zero.nates from [11], where random discrete velocity models

were introduced (cf. also [9, 10, 12, 21]). Thus, one obtains Remark. For simplicity, we will omit the lengthy list
some combination of particle schemes (particles with of superscripts appearing in (2.2)–(2.3) (or at least a part
changing velocities and fixed weights) and discrete velocity of it), whenever this (as we hope) does not lead to misun-
models (particles with fixed velocities and changing derstanding.
weights).

The symbols xi(t) and vi(t) denote the position and theWe refer to [17] concerning another approach to the
velocity of the ith particle, gi(t) is considered as a weightproblem of variance reduction. Low discrepancy sequences
of the particle. Finally, m(t) is the number of particles inwere introduced instead of sequences of random numbers
the system.in some parts of the algorithm called finite pointset method.

The time evolution of the system (2.2) (the free flowWeighted particles in connection with this method were
simulation step) is defined as follows. The initial state ofconsidered in [18].
the system is, if k 5 0, an appropriate approximation ofThe paper is organized as follows. A general description
the initial measure l0 given in (2.4), or, otherwise, the finalof the method is given in Section 2. The main part of the
state of the system (2.3) on the time interval [tk21 , tk], i.e.,method, the modelling of collisions via a random weight

transfer, is introduced in Section 3. Results of numerical
x(1,k,n)

i (tk) 5 x(2,k21,n)
i (tk),experiments are presented in Section 4. Section 5 contains

some conclusions and remarks. v(1,k,n)
i (tk) 5 v(2,k21,n)

i (tk),

2. GENERAL DESCRIPTION OF THE METHOD g(1,k,n)
i (tk) 5 g(2,k21,n)

i (tk).

In this section we introduce the general framework of Then, the particles move according to their velocities, i.e.,
particle simulation schemes and explain the main ideas of
what we call a stochastic weighted particle method. x(1,k,n)

i (t) 5 x(1,k,n)
i (tk) 1 (t 2 tk)v(1,k,n)

i (t).
A time discretization

The velocities do not change unless a particle hits the
tk 5 k Dt, k 5 0, 1, ..., Dt . 0, (2.1) boundary. In this case, the corresponding velocity changes

according to the boundary condition. The weights of the
is used to split the simulation of the free flow of the particles particles remain the same during the free flow simulation.
and the simulation of their collisions. This means that on The time evolution of the system (2.3) (the collision
a small time interval of length Dt, at a first step, the free simulation step) is defined as follows. The initial state of
flow is simulated disregarding the possible collisions. Then, the system is the final state of the system (2.2) on the time
at a second step, the collisions are simulated neglecting interval [tk , tk11], i.e.,
the free flow.

To describe this procedure rigorously, we introduce two x(2,k,n)
i (tk) 5 x(1,k,n)

i (tk11),
families of particle systems

v(2,k,n)
i (tk) 5 v(1,k,n)

i (tk11),

(x(1,k,n)
i (t), v(1,k,n)

i (t), g(1,k,n)
i (t)), i 5 1, ..., m(1,k,n)(t), (2.2) g(2,k,n)

i (tk) 5 g(1,k,n)
i (tk11).

and The positions of the particles remain the same during the
collision simulation. A partition

(x(2,k,n)
i (t), v(2,k,n)

i (t), g(2,k,n)
i (t)), i 5 1, ..., m(2,k,n)(t), (2.3)

where t [ [tk , tk11]. The indices 1 and 2 indicate the free D 5 <
lc

l51

Dl (2.5)
flow simulation step and the collision simulation step, re-
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of the spatial domain D into a finite number lc of disjoint Let the functions
cells is used. There is no interaction between different
cells. In each cell, collisions of the particles are simulated. f (1,k)(t, x, v), f (2,k)(t, x, v), t [ [tk , tk11], x [ D, v [ R3,
Here various approaches differ. A detailed description of
the approach based on random weight transfer will be

where k 5 0, 1, ..., be defined as the solutions to thegiven in Section 3. Here we mention only the main idea,
following system of equations,on which the elementary interaction (collision between

two particles) is based.
Two indices i and j as well as an element e of the unit ­

­t
f (1,k)(t, x, v) 1 (v, =x) f (1,k)(t, x, v) 5 0, (2.10)

sphere S 2 are chosen randomly. Two new velocities

v*i 5 vi 1 e(e, vj 2 vi), v*j 5 vj 1 e(e, vi 2 vj) (2.6) with the initial conditions

are calculated (cf. (1.3)). Instead of replacing the precolli- f (1,k)(tk , x, v) 5 f (2,k21)(tk , x, v) for k 5 1, 2, ..., (2.11)
sion velocities vi , vj of the two particles by the postcollision
velocities v*i , v*j , we replace the pair of particles (xi , vi , andgi), (xj , vj , gj) by a group of four particles

f (1,k)(tk , x, v) 5 f0(x, v) for k 5 0, (2.12)(xi , vi , gi 2 G), (xj , vj , gj 2 G), (xi , v*i , G), (xj , v*j , G),

andwhere G is a function depending on the state of the system
and on the parameters i, j, e. Thus, each of the particles
taking part in the collision gives a part of its weight to a ­

­t
f (2,k)(t, x, v) 5 E

D
dy E

R
3 dw E

S
2 de h(x, y)B(v, w, e)particle with the postcollision velocity.

The numerical method consists in the simulation of the
3 [ f (2,k)(t, x, v*) f (2,k)(t, y, w*) (2.13)particle systems (2.2)–(2.3) and in the approximation of the

measures (1.4) by the corresponding empirical measures 2 f (2,k)(t, x, v) f (2,k)(t, y, w)],

with the initial conditione(n)(t, dx, dv) 5 Om(t)

i51
gi(t) d(xi(t),vi(t))(dx, dv), (2.7)

f (2,k)(tk , x, v) 5 f (1,k)(tk11 , x, v). (2.14)where d denotes the Dirac measure. This means that func-
tionals of the solution of Eq. (1.1) (e.g., density, momen-

The functiontum, energy) that are of the form

E
D

dx E
R

3 dv w(x, v) f(t, x, v), (2.8)
h(x, y) 5 Olc

l51

1
uDlu

¶Dl
(x)¶Dl

(y), (2.15)

where w is an appropriate test function, are approximated
by the term is a mollifying kernel depending on the partition (2.5),

where uDlu denotes the Lebesgue measure of the cell Dl ,
and ¶ denotes the indicator function.Om(t)

i51
gi(t)w(xi(t), vi(t)). (2.9)

The various approximations involved in the algorithm
are clearly displayed in the limiting equations. The splitting
of the free flow simulation and the collision simulationWe use the notion ‘‘stochastic weighted particle method’’

in order to emphasize that the third components in the leads to a corresponding splitting of the Boltzmann equa-
tion based on the time discretization (2.1). The introduc-systems (2.2)–(2.3) are, in general, not constant and that

the time evolution of the systems is stochastic. tion of the cell structure during the collision simulation
step is represented by the mollifier h in the limiting equa-As n R y, the empirical measures converge to the solu-

tion of an approximate Boltzmann equation. We describe tion. The transition from an approximate equation of the
type (2.10)–(2.14) to the Boltzmann equation (1.1) hasthe limiting equation, which has been obtained for Bird’s

DSMC method in [20] and which holds also for the stochas- been studied in [2] in connection with Nanbu’s simula-
tion scheme.tic weighted particle method presented in this paper.
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3. MODELLING OF COLLISIONS [J(z, i, j, e)]k

In this section we describe the collision simulation on a
time interval [tk , tk11], i.e., the system (2.3). For simplicity,
we omit the index k as well as the index 2, indicating the
collision simulation step. 55

(xk , vk , gk), if k # m, k ? i, j,

(xi , vi , gi 2 G(z, i, j, e)), if k 5 i,

(xj , vj , gj 2 G(z, i, j, e)), if k 5 j, (3.3)

(xi , v*i , G(z, i, j, e)), if k 5 m 1 1,

(xj , v*j , G(z, i, j, e)), if k 5 m 1 2,

In Section 3.1 we introduce a Markov jump process,
which provides the background for the definition of the
collision simulation. In Section 3.2 we study the relation-
ship between the Markov process and the approximate
Boltzmann equation (2.13). The pathwise behaviour of the with v*i , v*j given in (2.6). Concerning the weight transfer
Markov process is described in Section 3.3 in connection function G we assume
with the introduction of fictitious collisions. Some exam-

G(z, i, j, e)) # min(gi , gj) (3.4)ples are given in Section 3.4. Finally, in Section 3.5 we
introduce a reduction method for the number of particles

so that the weight components of the process remain non-in the system.
negative. The intensity function q is assumed to be bounded
and measurable.3.1. A Markov Jump Process

We consider a Markov process 3.2. Relation to the Boltzmann Equation

Consider a function
Z(n)(t) 5 h(x(n)

i (t), v(n)
i (t), g(n)

i (t)), i 5 1, ..., m(n)(t)j, t $ tk ,
(3.1)

F(z) 5 Om
i51

giw(xi , vi), z 5 ((x1 , v1 , g1), ..., (xm , vm , gm)),

with the infinitesimal generator

where w is an appropriate function on D 3 R3. Notice that

A (n)(F)(z) 5 O
1#i?j#m

E
S

2

1
2

q(z, i, j, e)

(3.2)
F(Z(n)(t)) 5 kw, e(n)(t)l, (3.5)

3 [F(J(z, i, j, e)) 2 F(z)] de, where Z(n) is the Markov process (3.1) and e(n) is the corre-
sponding empirical measure (2.7). Using (3.3), we find

where
F(J(z, i, j, e)) 5 F(z)

z 5 ((x1 , v1 , g1), ..., (xm , vm , gm)) [ Z (n),
1 G(z, i, j, e)[w(xi , v*i )

1 w(xj , v*j ) 2 w(xi , vi) 2 w(xj , vj)],Z (n) 5 <
N(n)

max

m5N(n)
min

(D 3 R3 3 [0, c(n)
max])m,

and, according to (3.2),

and F is a measurable bounded test function. The symbols
A (n)(F)(z) 5 O

1#i?j#m
E

S
2

1
2

q(z, i, j, e)

(3.6)
N(n)

min and N (n)
max denote a lower and an upper bound for the

number of particles in the system. The symbol c(n)
max denotes

an upper bound for the weights of the particles in the 3 G(z, i, j, e)[w(xi , v*i ) 1 w(xj , v*j )
system. We assume

2 w(xi , vi) 2 w(xj , vj)] de.

c(n)
max 5 Cg/n

The following representation holds for any measurable
bounded function F,

and

F(Z(n)(t)) 5 F(Z(n)(0)) 1 Et

0
A (n)(F)(Z(n)(s)) ds

(3.7)
N (n)

min 5 CN,minn, N(n)
max 5 CN,maxn.

1 M(n)(t),
The collision transformation J(z, i, j, e): Z (n) R Z (n) is

defined as where M(n)(t) is a martingale term.
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Assume that the intensity function q and the weight
G(z, i, j, e) 5 Olc

l51
¶Dl

(xi)¶Dl
(xj)G(l)(z, i, j, e). (3.11)transfer function G satisfy the equality

q(z, i, j, e)G(z, i, j, e) 5 h(xi , xj)B(vi , vj , e)gi gj , (3.8)
Then, the particle system (3.1) can be divided into indepen-
dent subsystems corresponding to the spatial cells, pro-

where B is the collision kernel of the Boltzmann equation vided that the functions q(l) and G(l) depend only on parti-
and h is the mollifying kernel defined in (2.15). Then, using cles belonging to the cell Dl. For example, this is fulfilled, if
(3.7), (3.5), and (3.6), one obtains the representation

q(l)(z, i, j, e) 5 q(l)(xi , xj , vi , vj , e) (3.12)
kw, e(n)(t)l 5 kw, e(n)(0)l 1 Et

0
E

D3R
3 ED3R

3 E
S

2

and
1
2

h(x, y)B(v, w, e)
G(l)(z, i, j, e) 5 G(l)(xi , xj , vi , vj , e) (3.13)

3 [w(x, v*) 1 w(y, w*) 2 w(x, v) 2 w(y, w)]
For a fixed cell Dl , we consider the generator of the

3 de e(n)(s, dy, dw)e(n)(s, dx, dv) ds 1 R(n),
corresponding process,

where R(n) is a remainder disappearing when n R y. There-
fore, the limit l(t) of the empirical measures is expected A (n,l)(F)(z) 5 O

1#i?j#m
E

S
2

1
2

¶Dl
(xi)¶Dl

(xj)q(l)(z, i, j, e)

(3.14)to satisfy the equation

3[F(J(l)(z, i, j,e)) 2 F(z)] de,
kw, l(t)l 5 kw, l(0)l

where J(l) denotes the transformation (3.3) with G replaced
1 Et

0
E

D3R
3 ED3R

3 E
S

2

1
2

h(x, y)B(v, w, e) (3.9)
by G(l).

The generation of a trajectory of the Markov process
3 [w(x, v*) 1 w(y, w*) 2 w(x, v) 2 w(y, w)] can be simplified significantly by means of the following

procedure, which is called the introduction of fictitious3 de l(s, dy, dw)l(s, dx, dv) ds.
jumps. Under the assumption

We refer to [21] concerning a convergence proof.
Assume the measures l(t) are absolutely continuous q(l)(z, i, j, e) # q̃(l)(z, i, j, e), (3.15)

with respect to the Lebesgue measure. Then, after the
substitution of the integration variables (v, w) by (v*, w*) the generator (3.14) can be transformed as
and removing the test function w, Eq. (3.9) reduces to Eq.
(2.13), provided that the kernel B has the properties

A (n,l)(F)(z) 5 O
1#i?j#m

E
S

2 E1

0

1
2

¶Dl
(xi)¶Dl

(xj)
B(v, w, e) 5 B(w, v, e) 5 B(v*, w*, e).

3 q̃(l)(z, i, j, e)[F(J̃(l)(z, i, j, e, h)) (3.16)
Thus, condition (3.8) describes the basic relationship be-

2 F(z)] dh de,tween the parameters q and G of the stochastic process
(3.1) and the parameters B and h of the approximate Boltz-

wheremann equation (2.13).

3.3 Pathwise Behaviour and Fictitious Collisions J̃(l)(z, i, j, e, h)

Taking into account the special form (2.15) of the molli-
5 5J(l)(z, i, j, e), if h #

q(l)(z, i, j, e)

q̃(l)(z, i, j, e)
,

z, otherwise.

(3.17)fying kernel h and the condition (3.8), we assume that the
functions q and G are of the same structure, i.e.,

The behaviour of the Markov process with the generatorq(z, i, j, e) 5 Olc
l51

¶Dl
(xi)¶Dl

(xj)q(l)(z, i, j, e) (3.10)
(3.16) is as follows. Given a state

z 5 ((x1 , v1 , g1), ..., (xm , vm , gm)),and
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the process waits a random time having an exponential the collision simulation step is finished. Note that both
fictitious and real collisions are counted.distribution with the parameter

The general idea of the introduction of fictitious colli-
sions is to generate more collisions by a much simplified

f̃(l)(z) 5 O
1#i?j#m

E
S

2

1
2

¶Dl
(xi)¶Dl

(xj)q̃(l)(z, i, j, e) de. stochastic mechanism and to play an additional game of
chance to reduce the number of collisions to the right one.

(3.18) This idea is present in many of the algorithms used in
practical calculations, as the null-collision technique [14],
the majorant-frequency scheme [13], the no-time-counterThen, the process jumps from the state z into the state
scheme [4], or the scheme based on stochastic differentialJ̃(l)(z, i, j, e, h). This means that first the condition on h
equations with respect to Poisson measures [15].at the right-hand side of (3.17) is checked. If the condition

is not satisfied, then nothing happens and the jump (or the
3.4. Examplescollision) is called fictitious. Otherwise, a jump is per-

formed according to the jump transformation defined in We give three examples of functions q and G of the
(3.3). The jump (collision) parameters i, j, e, h are distrib- form (3.10)–(3.13) satisfying condition (3.8) and assump-
uted according to the density tion (3.4). The first example reduces to the standard parti-

cle simulation scheme (like DSMC) in the case of identical
initial weights. In the second and the third examples there

p(l)(i, j, e, h) 5
(1/2)¶Dl

(xi)¶Dl
(xj)q̃(l)(z, i, j, e)

f̃(l)(z)
. is a random weight transfer during the collisions. We as-

sume the collision kernel to be bounded (or truncated), i.e.,

Thus, the parameter h is uniformly distributed on the unit B(v, w, e) # Bmax ;v, w [ R 3, ;e [ S 2.
time interval [0, 1]. The distribution of the parameter i is

EXAMPLE 1. First we consider the functions

p(l)
1 (i) 5

oj:i?j eS
2 (1/2)¶Dl

(xi)¶Dl
(xj)q̃(l)(z, i, j, e) de

f̃(l)(z)
. G(l)(z, i, j, e) 5 min( gi , gj) (3.22)

(3.19) and

The distribution of the parameter j given the value of i is
q(l)(z, i, j, e) 5

1
uDlu

B(vi , vj , e) max( gi , gj),

p(l)
2 ( j u i) 5

e
S

2 ¶Dl
(xi)¶Dl

(xj)q̃(l)(z, i, j, e) de

oj:i?j eS
2 ¶Dl

(xi)¶Dl
(xj)q̃(l)(z, i, j, e) de

. (3.20) where uDlu is the Lebesque measure of the cell Dl . We
introduce (cf. (3.15))

Finally, the distribution of the parameter e given the values
q̃(l)(z, i, j, e) 5

1
uDlu

BmaxCg,max(l), (3.23)of i and j is

where Cg,max(l) denotes the maximum of the weights ofp(l)
3 (e u i, j) 5

q̃(l)(z, i, j, e)

e
S

2 q̃(l)(z, i, j, e) de
. (3.21)

the particles in the cell Dl . The condition on h at the right-
hand side of (3.17) takes the form

In the case q(l) 5 q̃(l), the behaviour of the original
process (without fictitious jumps) is obtained from the h #

B(vi , vj , e)
Bmax

max( gi , gj)
Cg,max(l)

. (3.24)
above procedure. An appropriate choice of the function
q̃(l) may lead to a substantial simplification of the modelling

From (3.18), we obtainof the process (note that the distribution of the process
remains the same).

In particular, if the parameter of the waiting time distri- f̃(l)(z) 5
1
2

4f
1

uDlu
BmaxCg,max(l)ml(ml 2 1), (3.25)

bution is easy to calculate, then the time step between two
collisions is approximated by the value f̃(l)(z)21. These
approximate time steps are added to a variable called the where ml denotes the current number of particles in the cell

Dl . Therefore, according to (3.19)–(3.20), the parameters itime counter. If the value of this variable reaches Dt, then
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and j are distributed uniformly among the particles belong- We use the function q̃(l) given in (3.23). The condition on
h takes the forming to the cell Dl , i.e.,

p(l)
1 (i) 5

1
ml

, p(l)
2 ( j u i) 5

1
ml 2 1

. (3.26) h #
max( gi , gj)

Cg,max(l)
. (3.32)

According to (3.21), the parameter e is distributed uni- The distribution of the parameters i, j, e and the time step
formly on the unit sphere, i.e., remain the same as given in (3.26)–(3.28).

Consider Example 1 in the case of identical initialp(l)
3 (e u i, j) 5 1/4f. (3.27)

weights. The function G reduces to a constant so that there
is a complete weight transfer during each collision. OneAccording to (3.25), the time step is of the form
obtains the standard DSMC method.

Comparing Example 2 and Example 1, we notice that
even in the case gi 5 gj only half of the weight is transferredF2f

1
uDlu

BmaxCg,max(l)ml(ml 2 1)G21

. (3.28)
(cf. (3.29)). On the other hand, the time step is also divided
by the factor 2 (compare (3.28) and (3.30)). Thus, the

EXAMPLE 2. Next we consider the functions number of collisions (including fictitious) increases twice.
This means that there are more collisions but a smaller
weight transfer during each collision.G(l)(z, i, j, e) 5

gigj

gi 1 gj
(3.29)

Comparing Example 3 and Example 1, we mention that
the time step is the same in both examples. Therefore, the

and number of collisions (including fictitious) is (roughly) the
same. But the portion of fictitious collisions is less in Exam-
ple 3, since the condition on h is weaker (compare (3.24)

q(l)(z, i, j, e) 5
1

uDlu
B(vi, vj, e)( gi 1 gj). and (3.32)). On the other hand, the amount of weight

transferred during a collision is also less in Example 3
(compare (3.22) and (3.31)). This means that in many situa-We introduce (cf. (3.15))
tions, i.e., for many configurations of the parameters i, j,
e, instead of ‘‘performing’’ a fictitious collision, a small

q̃(l)(z, i, j, e) 5
1

uDlu
Bmax2Cg,max(l). part of the weight is transferred.

3.5. Reduction of the Number of ParticlesThe condition on h takes the form
In general, the number of particles in the system in-

creases during each collision. Thus, this number has to be
h #

B(vi , vj , e)
Bmax

gi 1 gj

2Cg,max(l)
. reduced when it becomes too large.

Suppose we are given a system of particles
The distribution of the parameters i, j, e remains the same
as given in (3.26), (3.27). The time step is of the form (x1 , v1 , g1), ..., (xm , vm , gm). (3.33)

The problem is to construct a system with a reduced num-F4f
1

uDlu
BmaxCg,max(l)ml(ml 2 1)G21

. (3.30)
ber of particles but such that the corresponding empirical
measures do still approximate the solution of the Boltz-
mann equation.EXAMPLE 3. Finally, we consider the functions

We divide the system (3.33) into m̂ groups of
particles

G(l)(z, i, j, e) 5
B(vi , vj , e)

Bmax
min( gi , gj) (3.31)

(xi, j , vi, j , gi, j), i 5 1, ..., m̂, j 5 1, ..., ki . (3.34)
and

Each group will be replaced by two particles in such a way
that mass, momentum, and energy are preserved. To thisq(l)(z, i, j, e) 5

1
uDlu

Bmax max( gi , gj).
end, we introduce the notations
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In order to estimate the error caused by the reduc-
ci 5 Oki

j51
gi, j , (3.35) tion procedure, we consider the bounded Lipschitz

metric

ai 5
1
ci
Oki

j51
gi, jvi, j , (3.36)

r(n1 , n2) 5 sup
iwiL#1

UE
D3R

3 w(x, v)n1(dx, dv)

bi 5
1
ci
Oki

j51
gi, jivi, ji2, (3.37)

2 E
D3R

3 w(x, v)n2(dx, dv)U,
and

where
«2

i 5 bi 2 iaii2, (3.38)

where i 5 1, ..., m̂. Now the reduced system is defined iwiL 5 max Ssup
x,v

uw(x, v)u, sup
(x,v)?( y,w)

uw(x, v) 2 w( y, w)u
ix 2 yi 1 iv 2 wi

D .
as

(x̃i, j , ṽi, j , g̃i, j), i 5 1, ..., m̂, j 5 1, 2, (3.39) This metric is equivalent to weak convergence of measures.
We will estimate the distance r(e, ẽ), where

where

e 5 Om
i51

gid(xi,vi)
, ẽ 5 Om̂

i51
[g̃i,1d(x̃i,1,ṽi,1) 1 g̃i,2d(x̃i,2,ṽi,2)]ṽi,1 5 ai 1 «iei , g̃i,1 5 As ci (3.40)

and
are the empirical measures associated with the original
system (3.33) and the reduced system (3.39), respectively.

ṽi,2 5 ai 2 «iei , g̃i,2 5 As ci . (3.41) We obtain

The new positions x̃i,j are chosen from the set (cf.
ukw, el 2 kw, ẽlu(3.34))

5 UOm̂
i51

Oki

j51
gi, jw(xi, j , vi, j) 2 Om̂

i51

1
2

ci[w(x̃i,1 , ṽi,1)Xi 5 hxi, j : j 5 1, ..., kij. (3.42)

The vectors ei [ S 2 are arbitrary.
1 w(x̃i,2 , ṽi,2)]U (3.43)Note the conservation properties in each group,

k1, ẽil 5 ci 5 k1, eil, # Om̂
i51
UOki

j51
gi, jw(x̂, vi, j) 2

1
2

ci[w(x̂, ṽi,1) 1 w(x̂, ṽi,2)]U
kv, ẽil 5 As ci2ai 5 kv, eil,

kivi2, ẽil 5 As ci(iai 1 «ieii2 1 iai 2 «ieii2) 1 2 Om̂
i51

diam(Xi)ci ,

5 As ci(2iaii2 1 2«2
i )

5 ci(iaii2 1 bi 2 iaii2) 5 kivi2, eil, where x̂ [ Xi is a fixed position (cf. (3.42)), and the obvi-
ous inequality

where
uw(x, v) 2 w(x̂, v)u # ix 2 x̂i

# diam(Xi) ;x [ Xi , ;v [ R 3
ei 5 Oki

j51
gi, jd(xi, j,vi, j)

,

has been used. Using (3.36), (3.40), and (3.41), the termẽi 5 g̃i,1d(x̃i,1 ,ṽi,1) 1 g̃i,2d(x̃i,2 ,ṽi,2),
inside the first sum on the right-hand side of (3.43) is
estimated asi 5 1, ..., m̂.
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D 5 hx [ R 3 : x1 [ [0, 1]j.UOki

j51
gi, jw(x̂, vi, j) 2

1
2

ci[w(x̂, ṽi,1) 1 w(x̂, ṽi,2)]U
We assume homogeneity in x2 and x3 , so that the problem
reduces to a one-dimensional with respect to the spatial co-

# Oki

j51
gi, juw(x̂, vi, j) 2 w(x̂, ai)u

(3.44)
ordinates.

We consider the collision kernel that corresponds to the
case of hard sphere molecules, i.e.,

1 Uciw(x̂,ai) 2
1
2

ci[w(x̂, ṽi,1) 1 w(x̂, ṽi,2)]U
B(v, w, e) 5

1

2Ï2fk
u(v 2 w, e)u,

# Oki

j51
gi, jivi, j 2 aii 1 ci«i .

with a truncation that is adapted during the calculation.
Finally, using (3.35), (3.37), and (3.38), we estimate The symbol k denotes the mean free path between colli-

sions, which is equal to the Knudsen number in our case.
The initial distribution (cf. (1.2)) is supposed to be Max-Oki

j51
gi, jivi, j 2 aii # (ci)1/2 SOki

j51
gi, jivi, j 2 aii2D1/2

(3.45)
wellian, i.e.,

5 (ci)1/2(cibi 2 2ciiaii2 1 ciiaii2)1/2 5 ci«i .

f0(x, v) 5
1

(2fRT0)3/2 exp S2
1

2RT0
ivi2D ,

Thus, we obtain from (3.43), (3.44), and (3.45)

where T0 is the initial temperature, and R is the gas con-
r(e, ẽ) # 2 Om̂

i51
ci«i 1 2 Om̂

i51
diam(Xi)ci . (3.46) stant.

The boundary condition is diffuse reflection with the
temperatures Tleft and Tright at the left and the right

Note that plate, respectively.
We calculate the time evolution of the macroscopic vari-

ables d and T that describe the density and the temperature
c2

i «
2
i 5 SOki

j51
gi, jD SOki

j51
gi, jivi, ji2D2 IOki

j51
gi, jvi, jI2

of the gas, respectively. These quantities are defined as

5 Oki

j51
g2

i, jivi, ji2 1 O
1#j1,j2#ki

gi, j1
gi, j2

(ivi, j1
i2 1 ivi, j2

i2)

(3.47)
d(t, x) 5 E

R
3 f(t, x, v) dv (4.1)

and
2 Oki

j51
g2

i, jivi, ji2 2 2 O
1#j1,j2#ki

gi, j1
gi, j2

(vi, j1
, vi, j2

)

5 O
1#j1,j2#ki

gi, j1
gi, j2

ivi, j1
2 vi, j2

i2. T(t, x) 5
1

3Rd(t, x) FER
3 ivi2f(t, x, v) dv

(4.2)

2 I 1
d(t, x)

E
R

3 vf(t, x, v) dvI2G .The right-hand side of (3.46) gives an estimate of the error
caused by the reduction step. This error is the sum of the
errors made in each group (3.34), which are weighted by

Using some smoothing with respect to the position variablethe masses ci of the groups. The errors in each group are
x, the quantities (4.1) and (4.2) are expressed via function-determined by two components—the maximum difference
als of the form (2.8), with test functionsof the positions and the weighted differences of the veloci-

ties (cf. (3.47)).

wa,l(x, v) 5
1

uDlu
¶Dl

(x)ivia,
4. NUMERICAL EXPERIMENTS

a 5 0, 1, 2, l 5 1, ..., lc (cf. (2.15)).In this section we present results of numerical experi-
ments performed with the stochastic weighted particle
method. We consider the problem of heat transfer between These functionals are approximated by terms of the form

(2.9), which are random variables,parallel plates. In this case, the spatial domain is of the form
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FIGURE 3FIGURE 1

of equal length. The initial number of particles is 200 perja,l(t) 5 Om(t)

i51
gi(t)wa,l(xi(t), vi(t)). (4.3)

cell. The mean free path is k 5 0.05.
The initial temperature of the gas is T0 5 200, the tem-

In order to estimate the fluctuations of the random vari- perature of the boundary is Tleft 5 100 at the left plate
ables (4.3), a number N of independent ensembles of parti- and Tright 5 300 at the right plate.
cles is generated. The corresponding values of the random The density (4.1) and the temperature (4.2) of the gas
variables are denoted by j (1)

a,l (t), ..., j (N)
a,l (t). Then the empiri- have been calculated at the time t1 5 0.1 and at the time

cal mean t2 5 0.2, where the time unit is the quotient of the distance
between the plates and the mean thermic velocity, i.e., 1/
Ï2RT0 .1

N ON
j51

j ( j)
a,l (t) (4.4) An averaging over N 5 100 independent runs of the

algorithm was performed (cf. (4.4)). The bounds for the
fluctuations are at a level of about 5% of the expectedconverges as N R y to the expectation of the random
values for both algorithms; i.e., the confidence intervalsvariable (4.3). The statistical fluctuations around this
(corresponding to the confidence level 0.99) have a lengthdeterministic limit are characterized by the quantity
of 0.05 in our figures. We decided not to display the confi-ÏDa,l(t)/N, where Da,l(t) denotes the mean square devia-
dence intervals in order not to overload the figures.tion of the random variable (4.3) from its expectation. The

The results of the calculations are shown in Figs. 1–4.order of convergence of the fluctuations is 1/ÏN. However,
The dashed lines represent the results for the stochasticthe actual values depend strongly on the factor Da,l(t).
weighted particle method (cf. Example 2), while the solidThe spatial domain [0, 1] is divided into lc 5 41 cells Dl

FIGURE 4FIGURE 2
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lines represent the results obtained with the standard tial coordinates, on the velocities of the colliding particles,
and even on the direction parameter e that determinesDSMC method (cf. Example 1).
the postcollision velocities (cf. (3.13)). Thus, it becomes

5. CONCLUDING REMARKS possible to ‘‘direct’’ particles into spatial regions, where
the density is very small. To study this problem, it is neces-

Summarizing the results of this paper, we point out what
sary to consider at least a two-dimensional position space.

we consider as the main achievements and the most im-
The investigation of such test cases will be the main subject

portant open problems.
of future work.

We have developed a class of algorithms for the numeri-
cal treatment of the Boltzmann equation. This class con-
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